Статья Епифановой Татьяны Николаевны учителя математики ГБОУ СОШ №1358 г. Москвы «Нестандартные формы проведения уроков с целью повышения познавательной активности учащихся».

В статье рассматривается применение эвристического метода обучения на примере изучения теоремы Пифагора. Разбираются два наглядных способа доказательства этой теоремы. Пробуждая творческую активность учащихся, учитель, умело задавая вопросы, подводит школьников к «открытию» теоремы Пифагора. Прививая детям интерес к отысканию различных способов доказательств утверждений, учитель тем самым развивает исследовательские способности учащихся.

Нестандартные формы проведения уроков с целью повышения познавательной активности учащихся.doc
Получите доступ ко всем материалам
Полный и неограниченный доступ к 20 000 материалов методической библиотеки на год с момента подачи и оплаты заявки. Доступ стоит 1100 руб в год
Если Вы уже подавали заявку – тогда войдите или зарегистрируйтесь на сайте под тем же email-адресом, на который оформляли доступ
Также доступ ко всем материалам получают БЕСПЛАТНО
Участники Федерального учебно-методического объединения учителей
БЕСПЛАТНО
Участники объединения получают множество привилегий включая бесплатное прохождение любых курсов КПК и переподготовки (оплачивается только изготовление и отправка документов), бесплатные сертификаты, благодарственные письма, стажировки зарубеж, помощь в прохождении аттестации, юридическую помощь и многое другое.
Похожие материалы
Раздел: Иное
Данный материал поможет учителю подготовиться к уроку геометрии по теме "Взаимное расположение двух окружностей. Построение касательных". В лаконичной форме приведены все этапы построения касательных при различных расположениях окружностей. Приведены задачи для практического решения и закрепления темы.
Раздел: Иное

По данным статистической обработки результатов ЕГЭ планиметрические задачи вызывают трудности не только у слабых, но и у более подготовленных учащихся. Как правило, это задачи, при решении которых нужно применить число геометрических фактов из школьного курса в измененной ситуации, а вычисления не содержат длинных выкладок. Решая такую задачу, ученик должен в первую очередь проанализировать предложенную в задаче конфигурацию и увидеть те свойства, которые необходимы при решении. Выходом из этой ситуации является создание системы многоуровневых задач по основным разделам курса планиметрии. Повторение и обобщение знаний учащихся начинается с повторения теоретического материала. Затем учащимся предлагается решение задач базового уровня (З.З.). После отработки таких заданий, учащиеся самостоятельно или в группах отрабатывают навыки решения модифицированных задач (М.З.). Совместно с учителем рассматриваются способы решения планиметрических задач (Н.Н.) из открытого банка заданий ЕГЭ ( задание С 4). Как правило, эти задачи - многовариантные задачи по планиметрии. Перебор вариантов является частью решения задач такого типа. Целью работы: создание многоуровневой системы задач по планиметрии для дифференцированного обучения старшеклассников решению задач по планиметрии, предоставление учащимся права выбора уровня задач.

Комментарии

No comments

Это ваш материал?
Войдите или зарегистрируйтесь на сайте под тем email-адресом, под которым Вы загружали данный материал. После этого Вы сможете:
Заказать сертификат
Получить заказанные ранее