Тема 3.8 «Решение систем иррациональных уравнений» Вид занятия: комбинированный урок. Методы обучения: объяснительно-иллюстративный с использованием информационных технологий (ЭОР, мультимедийная презентация), репродуктивный. Уровень усвоения информации: первый (узнавание ранее изученных объектов, свойств) + второй (выполнение деятельности по образцу, инструкции или под руководством) Образовательные цели: рассмотреть понятие системы иррационального уравнения, алгоритм решения системы иррациональных уравнений. Формировать умение решать простейшие системы иррациональных уравнений, проводить по известным формулам и правилам преобразования буквенных выражений, включающих степени и радикалы. Воспитательные цели: создавать условия для развития самостоятельности в добывании студентами знаний, скорости восприятия и переработки информации, культуры речи, воспитании настойчивости в достижении цели; формировать умение работать в коллективе и команде. Развивающие цели: способствовать выработке навыков решения математических задач.
reshenie-sistem-irratsionalnyih-uravnenij.docx
Получите доступ ко всем материалам
Полный и неограниченный доступ к 20 000 материалов методической библиотеки на год с момента подачи и оплаты заявки. Доступ стоит 1100 руб в год
Если Вы уже подавали заявку – тогда войдите или зарегистрируйтесь на сайте под тем же email-адресом, на который оформляли доступ
Также доступ ко всем материалам получают БЕСПЛАТНО
Участники Федерального учебно-методического объединения учителей
БЕСПЛАТНО
Участники объединения получают множество привилегий включая бесплатное прохождение любых курсов КПК и переподготовки (оплачивается только изготовление и отправка документов), бесплатные сертификаты, благодарственные письма, стажировки зарубеж, помощь в прохождении аттестации, юридическую помощь и многое другое.
Похожие материалы
Урок составлен в соответствии с требованиями ФГОС основного общего образования. Учебник Н.Я. Виленкин, В.И. Жохов.
Урок-исследование по ФГОС в 8 классе по учебнику Алимова. Включает следующие материалы: презентация к уроку, тест, технологическая карта урока, раздаточный материал.
Обобщающий урок. Эпиграфом к нему я взяла слова известного русского математика Андрея Николаевича Колмогорова : «Обобщение понятия часто бывает полезным для достижения его сущности». Прямое вычисление площадей некоторых фигур проделывали ещё математики Древней Греции и Рима. Эти задачи носили название – задачи о квадратуре. Классической задачей является задача о квадратуре круга. Она заставила задуматься ни один ум . И лишь в XVII веке Ньютону и Лейбницу удалось открыть общий способ вычисления площадей плоских фигур. Этим способом и пользуемся и сегодня.
Комментарии

No comments

Это ваш материал?
Войдите или зарегистрируйтесь на сайте под тем email-адресом, под которым Вы загружали данный материал. После этого Вы сможете:
Заказать сертификат
Получить заказанные ранее