Решение задач с параметрами традиционно вызывает затруднение у учащихся. Как правило, учащиеся понимают объяснение учителя, но самостоятельно ничего не получается. Слова учителя «Заметим, что…» понятны, но как самому догадаться, именно это заметить. Ученик с помощью программы Geometry Expressions создает динамическую модель к задаче, анализирует ее и оформляет решение задачи. Теперь уже ученик задает вопросы учителю: « Я заметил, что… А как теперь мне из данного уравнения вывести то, что я заметил». Учитель теперь уже не лектор, а помощник, консультант.
Также доступ ко всем материалам получают БЕСПЛАТНО
Участники Федерального учебно-методического объединения учителей
БЕСПЛАТНО
Участники объединения получают множество привилегий включая бесплатное прохождение любых курсов КПК и переподготовки (оплачивается только изготовление и отправка документов), бесплатные сертификаты, благодарственные письма, стажировки зарубеж, помощь в прохождении аттестации, юридическую помощь и многое другое.
Данный урок-презентация знакомит учащихся 8 классов с темой "Теорема Виета". Одной из целей урока является-научить применять теорему Виета для составления квадратных уравнений.
Цель урока: выработать умение строить графики функции у = ах^2+n и у = а(х-m)^2 и у = ах^2+bх+с с помощью параллельных переносов вдоль осей координат.
Возрастающая потребность связи математики и различных жизненных ситуаций побуждает учителя применять такие формы проведения уроков, которые бы могли активизировать сознательную деятельность учащихся. Одной из таких форм является урок на основе проблемно – исследовательской технологии, когда ученик сталкивается с проблемой, для решения которой имеющихся знаний недостаточно, следовательно, эти знания нужно «добыть». Учащиеся сами формулируют проблемы, выдвигают гипотезы, находят способы решений. Учитель направляет учащихся, создает ситуации успеха. Изучение квадратичной функции начинается с рассмотрения функции у = ах2, её свойств и особенностей графика, а уже затем рассматриваются частные виды у = ах2+n и у = а(х-m)2. Важно, чтобы учащиеся поняли, что график функции у = ах2+bх+с может быть получен из графика функции у = ах2 с помощью соответствующих преобразований относительно осей координат.
Комментарии
No comments
Это ваш материал?
Войдите или зарегистрируйтесь на сайте под тем email-адресом, под которым Вы загружали данный материал. После этого Вы сможете: