Хорошо развитые у учащихся вычислительные навыки — одно из условий их успешного обучения в старших классах. Учителю математики необходимо обращать внимание на вычислительные навыки с того самого момента, когда учащиеся переходят к нему из начальной школы. Цель моей работы показать некоторые пути формирования вычислительных навыков на разных этапах учебного процесса.Использование различных форм и приемов организации вычислительной деятельности школьников, способствует не только формированию прочных осознанных вычислительных умений и навыков, но и повышению качества знаний, активизации мыслительной деятельности, создает мотивации к учебе и развивает познавательный интерес к предмету.
Также доступ ко всем материалам получают БЕСПЛАТНО
Участники Федерального учебно-методического объединения учителей
БЕСПЛАТНО
Участники объединения получают множество привилегий включая бесплатное прохождение любых курсов КПК и переподготовки (оплачивается только изготовление и отправка документов), бесплатные сертификаты, благодарственные письма, стажировки зарубеж, помощь в прохождении аттестации, юридическую помощь и многое другое.
Предлагаю вашему вниманию таблицу «Общеучебные умения и навыки, элементы развития», где в первом столбце «Проблемы» перечислены основные трудности и некоторые особенности усвоения геометрических знаний учащимися, а во втором столбце - «Возможности разрешения» предлагаются основные направления коррекционной работы.
Идти от целого к части, опираться не на зубрёжку, а на понимание — вот основа методики Шаталова. Учёбу можно сравнить с разглядыванием картины. Если разбить полотно на кусочки и брать их по отдельности, то неизвестно, сложится ли целостное восприятие изображения. Но именно так обычно преподают в школе. А если вначале дать представление о целом, то кусочки легко встанут на свои места, и мозаика сложится.
Прочные знания можно сформировать благодаря умелому структурированию материала, наращиванию информации в оптимальном темпе и её многократному повторению. Пренебрежение мерой в дозировании учебного материала ведёт к тому, что «в одно ухо влетает, а из другого вылетает». Проблему решает не совершенствование системы экзаменов, а методика обучения, усиливающая естественный механизм понимания. Опорный конспект представляется в виде некой графической схемы из элементов, связанных между собой. Удачная схема — находка для учителя и ученика. Ученики выводят из неё ответ, как из красивой формулы.
Данный урок- второй по теме «Координаты вектора». На уроке отрабатывается навык нахождения координат вектора. Данный урок неразрывно связан с последующей темой «Скалярное произведение векторов», и без умения находить координаты вектора проблематично будет решать задания этой темы. Главный этап урока - решение задач с практическим содержанием.Практическое применение векторов показывает учащимся, что изучаемая тема является не просто теоретическими выкладками, а непосредственно связано с жизненными ситуациями. Использование интерактивной презентации позволяет учащимся на каждом этапе урока проверять правильность своего решения, и корректировать полученные знания.
Комментарии
No comments
Это ваш материал?
Войдите или зарегистрируйтесь на сайте под тем email-адресом, под которым Вы загружали данный материал. После этого Вы сможете: