Вычисление площадей геометрических фигур, ограниченных криволинейным контуром.

Лабораторно-графическая работа.Климкина Ю.А.
Получите доступ ко всем материалам
Полный и неограниченный доступ к 20 000 материалов методической библиотеки на год с момента подачи и оплаты заявки. Доступ стоит 1100 руб в год
Если Вы уже подавали заявку – тогда войдите или зарегистрируйтесь на сайте под тем же email-адресом, на который оформляли доступ
Также доступ ко всем материалам получают БЕСПЛАТНО
Участники Федерального учебно-методического объединения учителей
БЕСПЛАТНО
Участники объединения получают множество привилегий включая бесплатное прохождение любых курсов КПК и переподготовки (оплачивается только изготовление и отправка документов), бесплатные сертификаты, благодарственные письма, стажировки зарубеж, помощь в прохождении аттестации, юридическую помощь и многое другое.
Похожие материалы
Презентация урока по теме "Тела вращения" 11 класс
Задание С4 предполагает умение выполнять действия с геометрическими фигурами, координатами и векторами. Особенностью этих задач является рассмотрение различных конфигураций геометрических фигур. Чтобы решить их, надо хорошо знать планиметрию - со всеми описанными, вписанными и вневписанными окружностями, хордами, вообще все про окружности и пересекающие их прямые. Так как изучение планиметрии заканчивается в 9 классе, то необходимо систематически включать в работу на уроке в 10 – 11 классах решение сложных задач по планиметрии. Особенно акцентировать внимание учащихся на свойствах фигур, на опорных задачах и рассматривать различные способы расположения геометрических фигур на плоскости. Необходимо изучать свойства фигур, которые не входят в школьную программу, при решении даже стандартных задач рассматривать возможность другой конфигурации фигур.

Урок изучения нового материала. Эпиграфом к уроку стали слова Д.Пойа: «Лучший способ изучить что-либо – это открыть самому». Использование поисково-исследовательской деятельности в работе групп, на которые разбит класс, позволит найти закономерность между сторонами треугольника и доказать важнейшую теорему геометрии.

Комментарии

No comments

Это ваш материал?
Войдите или зарегистрируйтесь на сайте под тем email-адресом, под которым Вы загружали данный материал. После этого Вы сможете:
Заказать сертификат
Получить заказанные ранее